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The Nature of Molybdenum(IV) in Aqueous 
4 M HCl Solution. Structure Analysis by EXAFS 

Sir: 

The structure of Mo(IV) in acidic aqueous media has oc­
casioned much speculation'"5 since its first synthesis in rela­
tively pure form in 1966.1 The solution structure of the red ion 
was originally proposed1 as MoO(OH)+, but Ardon and 
Pernick,4 on the basis of ion-exchange column elution behavior 
(4 M HPTS) and redox titrations, postulated a dinuclear 
structure (I). Their conclusion was challenged by Ramasami 
et al.,5 whose kinetics data were interpreted in terms of a mo­
nonuclear MoO2+ or Mo(OH)22+ structure. However, Ardon 
and co-workers6 performed cryoscopic experiments that rule 
strongly in favor of a dinuclear formulation such as I; what is 
more, the results of recent electrochemical studies7 are entirely 
consistent with some type of dimeric structure for 
Mo(IV)aq. 

[(H2O)4Mo Mo(OH2)4]4+ 

I 
X-ray absorption spectroscopy has recently been developed 

as a probe of molecular structure capable of identifying the 
type, number, and distances of atoms in the environment of a 
particular X-ray absorber.8'9 Analysis of the extended X-ray 
absorption fine structure (EXAFS) of a variety of Mo com­
pounds has demonstrated an accuracy of ±0.02 A in the de­
termination of Mo-X distances, along with a capacity for 
identifying the type and number of X atoms.10 In this com­
munication we present X-ray absorption data for Mo(IV) in 
4 M HCl that (1) conclusively rule out mononuclear formu­
lations and strongly suggest a dinuclear structure; (2) indicate 
the absence of multiply bound oxo groups; and (3) provide the 
first quantitative structural information about Mo-Mo and 
Mo-O bond lengths in this Mo(IV) complex. 

The molybdenum K-absorption edge of Mo(IV) in 4 M 
aqueous HCl is shown in Figure la.11 The principal inflection 
point occurs at 20014.9 ± 0.5 eV, which is within experimental 
error of the 20015.4 ± 0.5 eV value previously found for 
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Figure 1. (a) Mo(IV) (4 M HCl) absorption edge ( - - ) and derivative 
(---) . (b) Mo(IV) (4 M HCl) EXAFS Fourier transform: range, 4-16 
A - ' ; scaling, k3; magnitude ( - - ) and imaginary part (---)• 

M0O2.12 For comparison, Mo(V) and Mo(VI) compounds 
with all oxygen-donor ligands typically have edge inflection 
points 3-5 eV higher.13 

In the low-energy foot of the absorption edge there is a weak 
bound-state transition, which is primarily Is —* 4d in character, 
and which is best seen as an inflection in the derivative curve. 
It has been shown previously that the presence of multiply 
bound oxo groups, i.e., Mo=O, results in a substantial en­
hancement of the low-energy bound-state transitions at the Mo 
edge.12 Thus, as the number of oxo groups is increased from 
1 to 4, a characteristic low-energy feature grows from a 
shoulder to a well-resolved peak.13 In all cases examined to 
date, the presence of Mo=O bonds resulted in a bound-state 
transition substantially stronger than observed in the present 
case. Thus we conclude on the basis of the edge shape alone 
that a Mo=O unit is not present under the conditions of our 
experiment. Similar arguments have been used to exclude the 
presence of Mo=O bonds in the nitrogenase Mo-Fe protein12 

and to confirm their presence in the molybdenum enzyme 
sulfite oxidase.14 

The EXAFS of Mo(IV) (4 M HCl) is depicted in Figure 2a 
along with the best three-wave fit. The Fourier transform of 
these data reveals only a single major peak (Figure lb), the 
position and size of which agree with a MoMo assignment. 
Similar transforms for oxo and sulfido-bridged Mo dimers have 
been obtained'previously,10 and comparison of the Mo(IV) (4 
M HCl) peak position with the [Mo2O2O2CyS2]

2- standard 
indicates an Mo-Mo distance of 2.52 A in the former. 

Curve-fitting analysis of the EXAFS itself, according to 
previously published procedures,10 began with a single-shell 
fit using empirical MoMo phase shift and amplitude functions. 
This two-parameter fit predicted an Mo-Mo distance of 2.510 
A, with a normalized MoMo component amplitude 1.5 times 
that obtained for the dinuclear Mo(V) complex [Mo2O2-
02cys2]2_. Extra waves were then added for various Mo-O 
distances. A medium Mo-O distance was found at ~1.95 A, 
which is reasonably assigned to the bridging oxygens in 
structure I, whereas a longer Mo-O distance observed at ~2.15 
A probably represents an average bond length for a relatively 
disordered set of water ligands. 

The Mo-Mo distance of 2.51 A exhibited by Mo(IV) (4 M 
HCl) is intermediate between the 2.43-A value reported for 
the dinuclear Mo(III) complex [Mo2(OH)2(OAc)(edta)]~ l5 

and the 2.54-2.57-A distances typically found in dioxo-bridged 
Mo(V) complexes.I6'17 Furthermore, it is equal to the Mo-Mo 

Figure 2. (a) Fourier-filtered EXAFS ( - - ) and least-squares fit ( 
(b) Variation of y} ( • ) for three wave fits assuming 1 Mo-Mo1A' 
Oshon (A), and 6 - A Mo-Oiong (O) interactions. Notice how /V and 
are strongly correlated. 

Mo-
Aff2 

distance observed for MoO2.
18 The 1.95-A Mo-O distance is 

similar to the 1.92-19 to 1.94-A values20 reported for other 
di-jj-oxo groups, and significantly shorter than the 2.04-A 
Mo-O bond length in the OH-bridged Mo(III) complex.15 

Finally, the average Mo-O distance of 2.15 A is between 2.10 
A reported for MoOH in MoO(OH)CN)4

3- 21 and 2.27 A 
reported for MoOH2 in MoO(OH2)(CN)4

4-.22 In the latter 
two complexes the distances are for ligands trans to Mo=O; 
in view of this, 2.15 A appears reasonable for a Mo(IV)-OH2 
distance in the absence of a bond lengthening trans effect. 

Although the calculated Mo-X distances are all in agree­
ment with structure I, the preliminary amplitudes are low for 
the MoO components and high for the MoMo wave. Thus, a 
series of fits was done in which the MoX components were 
fixed at integral values and the relative Debye-Waller factor 
was varied.23 The best fit yields 1 MoMo (2.51 A),24 2 short 
MoO (1.96 A), and 4 long MoO (2.20 A), thereby indicating 
structure I. However, several alternative structural models are 
compatible with the EXAFS data, because changing the rel­
ative number of short (bridging) and long (water) oxygens can 
be accommodated in these unconstrained fits by varying the 
relative Debye-Waller factor (Figure 2b). In this connection 
we should mention that we have found no evidence for Cl -

inner sphere coordination, as the Fourier transform shows no 
features in the region corresponding to a Mo-Cl distance, and 
good fits were obtained without including Mo-Cl components. 
Further investigation is needed both on this point as well as on 
the question of the numbers and types of long and short Mo-O 
bonds. In an attempt to provide answers to these questions 
we are presently engaged in an extensive series of EXAFS 
experiments on Mo(IV)aq in methanesulfonic acid solu­
tions. 
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The Molybdenum Site of Sulfite Oxidase. Structural 
Information from X-ray Absorption Spectroscopy 

Sir: 

Very little is known about the structures of the active sites 
of molybdenum enzymes. Although knowledge of the molyb­
denum coordination sphere is essential both for rational syn­
thetic modeling and for determination of the catalytic mech­
anism, no molybdenum protein structure has yet been crys-
tallographically determined. Recent work has shown that 
X-ray absorption spectroscopy is a valuable tool for the de­
termination of metalloprotein active-site structures,1-4 and 
such studies of nitrogenase have suggested that the Mo in this 
enzyme is present in a cluster that includes Fe and S atoms.5'6 

However, biochemical work has shown that the "iron-mo­
lybdenum cofactor" of nitrogenase is quite different from the 
"molybdenum cofactor" 8-9 common to the remainder of mo­
lybdenum enzymes (xanthine oxidase-dehydrogenase, sulfite 
oxidase, aldehyde oxidase, nitrate reductase, and formate 
dehydrogenase). We now present X-ray absorption results for 
sulfite oxidase, which indicate both oxo and sulfur coordination 
for the Mo in this enzyme. 

ENERGY (eV) 
Figure 1. Molybdenum K-absorption edges for sulfite oxidase from dif­
ferent sources and in different states: top curves, oxidized chicken liver 
sulfite oxidase (CLSO) vs. oxidized beef liver sulfite oxidase; middle 
curves, oxidized CLSO vs. sulfite-reduced CLSO; bottom curves, oxidized 
CLSO vs. dithionite-reduced CLSO. All samples were run at ~100 
mg/mL in 0.05 M, pH 9.2 Tris-HCl buffer. The reduced samples were 
prepared with a 50-fold excess of reagent. 

Sulfite oxidase catalyzes the oxidation of sulfite to sulfate, 
using water as the source of oxygen and cytochrome c as the 
physiological electron acceptor.10 This enzyme has been ob­
served in bacteria, plants, and in mammalian tissues, especially 
in the liver.1' Sulfite oxidase contains two b-type cytochromes 
as well as two molybdenums, and it exists as a dimer of roughly 
55 000-dalton polypeptide subunits. Several different states 
of sulfite oxidase have been distinguished by a combination of 
EPR and optical spectroscopic measurements. The protein as 
isolated contains Mov ' and a low-spin ferric heme (Soret band 
at 413 nm).1' In the sulfite-reduced state there is a low-spin 
ferrous heme with a Soret band at 423 nm, and a Mov EPR 
signal appears at g = 1.97.'' Addition of dithionite causes loss 
of the Mo EPR, presumably because reduction to diamagnetic 
MoIV occurs." As illustrated in Figures 1 and 2, there are 
significant differences in both the absorption edges and in the 
EXAFS of all three of these molybdenum oxidation states. By 
correlating the edge changes with a variety of model com­
pounds, and by curve fitting the EXAFS with previously de­
termined phase shift and amplitude functions,12 a detailed 
structural model for the sulfite oxidase molybdenum site may 
be proposed. 

The most prominent feature of the sulfite oxidase Mo ab­
sorption edge spectra (Figure 1) is a low-energy bound-state 
( I s -* 4d) transition that is visible as a shoulder on the main 
absorption edge. Comparison with model compound spectra5,13 

suggests that the presence of one or two Mo=O groups gives 
rise to this feature, since Mo complexes without Mo=O gen­
erally have a smooth, single inflection point edge,5 whereas 
those with three of four oxo groups have a resolved low-energy 
peak.13 The major inflection point for the oxidized protein falls 
at 20 Ol 5 eV, which for MoVI in a protein environment suggests 
a coordination sphere with a mix of oxygen and sulfur Ii-
gands.14 These results are in direct contrast to previous findings 

0002-7863/79/1501-2772S01.00/0 © 1979 American Chemical Society 


